

Scary Acronyms (and
Super Creeps)

A take on OIBITs, HRTBs, and other charming
abbreviations

Patryk Wychowaniec

Past

Quite undoubtedly, many interesting things happened in the
past.

1752

For instance, on September 2nd, 1752 six and a half million
Britons went to bed and woke up on September 14th.

1752

For instance, on September 2nd, 1752 six and a half million
Britons went to bed and woke up on September 14th.

The reason was: Calendar (New Style) Act 1750.

1582

This guy is Pope Gregory XIII.

1582

This guy is Pope Gregory XIII.

In 1582 he was 10 years into
his reign as a leader of the
Catholic church.

1582

This guy is Pope Gregory XIII.

In 1582 he was 10 years into
his reign as a leader of the
Catholic church.

... and he had a problem with
Easter.

1582

To understand why, you’ve gotta remember that in 1582, Julian
calendar was (still) all the hype.

1582

To understand why, you’ve gotta remember that in 1582, Julian
calendar was (still) all the hype.

It measured a year as 365 days and 6 hours long…

1582

To understand why, you’ve gotta remember that in 1582, Julian
calendar was (still) all the hype.

It measured a year as 365 days and 6 hours long…

... which was close, but not exactly, 365 days, 5 hours and 49
minutes.

1582

Pope Gregory XIII, afraid that
"Earth days" (and thus
holidays) have diverged over
time, declared that countries
under the Catholic
dominionship should skip a
few days to catch up.

1582

Most countries agreed

1582

Most countries agreed

Britain did not

1582

Most countries agreed

Britain did not

... until 1752

1752

In 1752 Britain eventually legislated Calendar (New Style) Act
1750, cutting 11 days from everyone’s lives.

Fast-forward

Let’s fast-forward a few years…

2014

What happened in 2014?

2014

In 2014, there was a FIFA World Cup:

2014

In 2014, Marek Sawicki was appointed to the position of
minister of Agriculture and Rural Development in Poland:

2014

Also, this document happened:

OIBITs

OIBITs

OIBITs

OIBITs

OIBITs

OIBITs

OIBITs

OIBITs

OIBITs

To understand OIBITs, let’s see them at work.

OIBITs

Let’s create our very-own struct:

struct StrWrapper(&'static str); RUST

OIBITs

Now, let’s create a variable holding an instance of it:

struct StrWrapper(&'static str);

fn main() {
 let text = StrWrapper(
 "c-rustacean is a rust programmer who likes c
better"
);
}

RUST

OIBITs

And, just for the kicks, let’s send it into another thread:

struct StrWrapper(&'static str);

fn main() {
 let text = StrWrapper(
 "c-rustacean is a rust programmer who likes c
better"
);

 std::thread::spawn(move || {
 println!("{}", text.0);
 }).join().unwrap();
}

RUST

OIBITs

So, why does this code compile?

OIBITs

Not all values can be safely sent across thread boundaries - for
instance we can’t send Rc , because it’s not thread-safe:

use std::rc::Rc;

fn main() {
 let num = Rc::new(123);

 std::thread::spawn(move || {
 println!("{}", num);
 }).join().unwrap();
}

RUST

OIBITs

error[E0277]: `Rc<i32>` cannot be sent between threads safely
 |
 | thread::spawn(move || {
 | _____^^^^^^^^^^^^^_-
 | | |
 | | `Rc<i32>` cannot be sent between threads safely
 | | println!("{}", num);
 | | });
 | |_____- within this `[closure]`

OIBITs

use std::rc::Rc;

fn main() {
 let num = Rc::new(123);
 let mut num2 = Rc::clone(&num);

 std::thread::spawn(move || {
 // err: race read
 println!("{}", num);
 }).join().unwrap();

 // err: race write
 *Rc::get_mut(&mut num2).unwrap() += 1;
}

RUST

OIBITs

To distinguish between values (types) that can be sent across
thread boundaries, and those which can’t, Rust uses the Send
trait.

OIBITs

To distinguish between values (types) that can be sent across
thread boundaries, and those which can’t, Rust uses the Send
trait.

In other words: only when a type implements Send , can it be
safely transferred into another thread.

OIBITs

We can confirm this by inspecting the definition of
std::thread::spawn() :

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where
 F: FnOnce() -> T,
 F: Send + 'static,
 T: Send + 'static,

RUST

OIBITs
Going back to my original question:

Why does this code compile, if we don’t have impl Send for StrWrapper { }
anywhere?

struct StrWrapper(&'static str);

fn main() {
 let text = StrWrapper(
 "c-rustacean is a rust programmer who likes c better"
);

 std::thread::spawn(move || {
 println!("{}", text.0);
 }).join().unwrap();
}

RUST

OIBITs

OIBIT stands for: opt-in built-in trait.

OIBITs

OIBIT stands for: opt-in built-in trait.

There are two vital things you have to know about opt-in built-
in traits:

OIBITs

OIBIT stands for: opt-in built-in trait.

There are two vital things you have to know about opt-in built-
in traits:

they aren’t opt-in (mostly),·

OIBITs

OIBIT stands for: opt-in built-in trait.

There are two vital things you have to know about opt-in built-
in traits:

they aren’t opt-in (mostly),

they aren’t built-in (mostly).

·

·

OIBITs

OIBIT stands for: opt-in built-in trait.

There are two vital things you have to know about opt-in built-
in traits:

The feature was later renamed into auto traits, so from this
point forward we’re going to stick to the new terminology.

they aren’t opt-in (mostly),

they aren’t built-in (mostly).

·

·

Auto traits

When you have a regular trait, you have to implement it
yourself (opt-in):

struct StrWrapper(&'static str);

impl fmt::Display for StrWrapper {
 /* ... */
}

RUST

Auto traits

On the other hand, auto traits are implemented for you
automatically, unless you explicitly opt-out of them:

struct StrWrapper(&'static str);

impl !Send for StrWrapper { }
// ^ notice the exclamation mark

RUST

Auto traits

struct StrWrapper(&'static str);

impl !Send for StrWrapper { } // here

fn main() {
 let text = StrWrapper(
 "c-rustacean is a rust programmer who likes c
better"
);

 std::thread::spawn(move || {
 println!("{}", text.0);
 }).join().unwrap();
}

RUST

Auto traits

error[E0277]: `StrWrapper` cannot be sent between threads safely
 |
 | std::thread::spawn(move || {
 | _____^^^^^^^^^^^^^^^^^^_-
 | | |
 | | `StrWrapper` cannot be sent between threads safely
 | | println!("{}", text.0);
 | | }).join().unwrap();
 | |_____- within this `[closure]`

Auto traits

Generally, the rule is:

Type T automatically implements auto trait X when all fields
of that type implement X too.

Auto traits

Since:

... compiler automatically deducts that it’s safe to impl Send for this struct too.

pub struct Word {
 word: String,
 synonyms: Vec<String>,
 antonyms: Vec<String>,
}

fn assert_is_send<T: Send>() { }

fn main() {
 assert_is_send::<Word>();
}

RUST

String already implements Send ,
Vec<T> implements Send when T does,

·
·

Auto traits

Since Rc implements !Send , compiler automatically deducts that our Word is
!Send too.

pub struct Word {
 word: String,
 synonyms: Vec<Rc<String>>, // here
 antonyms: Vec<String>,
}

fn assert_is_send<T: Send>() { }

fn main() {
 assert_is_send::<Word>();
 // error: ^^^^ `Word` cannot be sent between
 // threads safely
}

RUST

Auto traits

use std::ffi::c_void;

pub struct EnterpriseFizzBuzzFfiWrapper {
 java_handler_object_facade: *const c_void,
}

fn assert_is_send<T: Send>() { }

fn main() {
 assert_is_send::<EnterpriseFizzBuzzFfiWrapper>();
 // error: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
}

RUST

Auto traits

Send isn’t magic - it’s defined in the standard library:

pub unsafe auto trait Send {
 // empty.
}

impl<T: ?Sized> !Send for *const T {}
impl<T: ?Sized> !Send for *mut T {}
impl<T: ?Sized> !Send for Rc<T> {}
// ... and many more

RUST

Auto traits

No one prevents you from creating your own auto traits:

auto trait Friend { }

impl !Friend for String { }

fn ensure_friend<T: Friend>() { }

fn main() {
 ensure_friend::<&str>();
 ensure_friend::<String>();
 // error: ^^^^^^ the trait `Friend` is not
 // implemented for
 // `std::string::String`
}

RUST

Me, Myself and I

My name’s Patryk Wychowaniec, a.k.a. Patryk27:

keybase.io/patryk27
reddit.com/u/patryk27

github.com/patryk27
4programmers.net (patryk27)

https://keybase.io/patryk27
https://reddit.com/user/patryk27
https://github.com/patryk27
https://4programmers.net/Profile/25239

HRTBs

Best way to find HRTBs? Hidden in the plain sight!

HRTBs

struct Movie {
 /* ... */
}

RUST

HRTBs

struct Movie {
 title: String,
 year: isize, // gotta care about those
 // pre Christian-Era movies!
}

RUST

HRTBs

struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self) {
 todo!()
 }
}

RUST

HRTBs

struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 todo!()
 }
}

RUST

HRTBs

struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

RUST

HRTBs

struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

fn main() {
 todo!()
}

RUST

HRTBs

/* ... */

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

fn main() {
 Movie {
 title: "The Room".into(),
 year: 2003,
 }.print(todo!());
}

RUST

HRTBs

How should our Serializer type look like?

type Serializer = ?; RUST

HRTBs

First of all - it has to be generic over T :

type Serializer<T> = ?; RUST

HRTBs

... we also want it to be a function:

type Serializer<T> = dyn Fn(?) -> ?; RUST

HRTBs

... a one returning string:

type Serializer<T> = dyn Fn(?) -> String; RUST

HRTBs

... and, obviously, it has to accept the object it wants to
serialize:

type Serializer<T> = dyn Fn(&T) -> String; RUST

HRTBs
Voilà:

type Serializer<T> = dyn Fn(&T) -> String; // here

struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

fn main() {
 Movie {
 title: "The Room".into(),
 year: 2003,
 }.print(todo!());
}

RUST

HRTBs

Now, to create some actual serializer, we’re going to use
serde .

HRTBs

use serde::Serialize; // | here

type Serializer<T> = dyn Fn(&T) -> String;

#[derive(Serialize)] // | here
struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

fn to_json<T>(value: &T) -> String where T: Serialize { // | here
 todo!() // |
} // |

fn main() {
 Movie {
 title: "The Room".into(),
 year: 2003,
 }.print(to_json); // | here
}

RUST

HRTBs

use serde::Serialize;

type Serializer<T> = dyn Fn(&T) -> String;

#[derive(Serialize)]
struct Movie {
 title: String,
 year: isize,
}

impl Movie {
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

fn to_json<T>(value: &T) -> String where T: Serialize {
 serde_json::to_string(value) // | here
 .unwrap() // |
}

fn main() {
 Movie {
 title: "The Room".into(),
 year: 2003,
 }.print(to_json);
}

RUST

HRTBs

fn main() {
 Movie {
 title: "The Room".into(),
 year: 2003,
 }.print(to_json);
// ^^^^^^^
}

RUST

error[E0308]: mismatched types
 |
26 | }.print(to_json);
 | ^^^^^^^
 | |
 | expected reference, found fn item
 | help: consider borrowing here: `&to_json`
 |
 = note: expected reference `&(dyn for<'r> std::ops::Fn(&'r Movie) -> std::string::String + 'static)`
 found fn item `for<'r> fn(&'r _) -> std::string::String {to_json::<_>}`

error: aborting due to previous error

HRTBs

expected reference:

&(dyn for<'r> Fn(&'r Movie) → String + 'static)

HRTBs

expected reference:

&(dyn for<'r> Fn(&'r Movie) → String + 'static)

(that’s our Serializer)

HRTBs

expected reference:

&(dyn for<'r> Fn(&'r Movie) → String + 'static)

(that’s our Serializer)

found fn item:

for<'r> fn(&'r) → String {to_json::<>}

HRTBs

expected reference:

&(dyn for<'r> Fn(&'r Movie) → String + 'static)

(that’s our Serializer)

found fn item:

for<'r> fn(&'r) → String {to_json::<>}

(that’s our to_json)

HRTBs

expected reference:

&(dyn for<'r> Fn(&'r Movie) → String + 'static)

(that’s our Serializer)

found fn item:

for<'r> fn(&'r) → String {to_json::<>}

(that’s our to_json)

What’s this dyn for thingie? We didn’t write it anywhere!

HRTBs

Let’s go back to our type:

type Serializer<T> = dyn Fn(&T) -> String; RUST

HRTBs

Let’s go back to our type:

type Serializer<T> = dyn Fn(&T) -> String;
// ^^ so... what's the
// lifetime of this?

RUST

HRTBs

Let’s go back to our type:

type Serializer<T> = dyn Fn(&T) -> String;
// ^^ so... what's the
// lifetime of this?
//
// why is this even
// legal?

RUST

HRTBs

Let’s go back to our type:

Answer: Lifetime elision

type Serializer<T> = dyn Fn(&T) -> String;
// ^^ so... what's the
// lifetime of this?
//
// why is this even
// legal?

RUST

HRTBs
Lifetime elision

To make common lifetime patterns more ergonomic, Rust
sometimes allows for lifetimes to be elided (i.e. ignored,
skipped).

HRTBs
Lifetime elision

To make common lifetime patterns more ergonomic, Rust
sometimes allows for lifetimes to be elided (i.e. ignored,
skipped).

Our tiny example actually used this mechanism thrice!

HRTBs
Lifetime elision (1/3)

impl Movie {
 // v v
 pub fn print(&self, serialize: &Serializer<Self>) {
 println!("{}", serialize(self));
 }
}

RUST

HRTBs
Lifetime elision (1/3)

impl Movie {
 pub fn print<'a, 'b>(
 &'a self,
 serialize: &'b Serializer<Self>,
) {
 println!("{}", serialize(self));
 }
}

RUST

HRTBs
Lifetime elision (2/3)

// v
fn to_json<T>(value: &T) -> String
where T: Serialize {
 serde_json::to_string(value)
 .unwrap()
}

RUST

HRTBs
Lifetime elision (2/3)

fn to_json<'a, T>(value: &'a T) -> String
where T: Serialize {
 serde_json::to_string(value)
 .unwrap()
}

RUST

HRTBs
Lifetime elision (3/3)

type Serializer<T> = dyn Fn(&T) -> String; RUST

HRTBs
Lifetime elision (3/3)

What we want is a function that will work for any lifetime.

We don’t care how long &T lives, as long as we can access it
during the function call.

type Serializer<T> = dyn Fn(&T) -> String; RUST

HRTBs
Lifetime elision (3/3)

We could do…

type Serializer<'a, T> = dyn Fn(&'a T) -> String; RUST

HRTBs
Lifetime elision (3/3)

We could do…

... but that would be a bit cumbersome to use (and, in a few
places, impossible to apply).

... plus we’ve already said that we want our serializer to work
for any lifetime, not a specific one.

type Serializer<'a, T> = dyn Fn(&'a T) -> String; RUST

HRTBs
Lifetime elision (3/3)

Here come HRTBs!

HRTBs
Lifetime elision (3/3)

Here come higher-ranked trait bounds!

HRTBs
Lifetime elision (3/3)

The underlined part is the way we form a higher-ranked trait
bound.

What it means is basically: I don’t care about the precise
lifetime, make it work for every one.

type Serializer<T> = dyn for<'a> Fn(&'a T) -> String;
// ^-----^

RUST

HRTBs

Thus the name: higher-ranked as if not limited to
specific lifetime , lifted above the ordinary types ™.

HRTBs

By the way, it might be tempting to create types such as:

type Wat1 = for<T> T;
type Wat2 = for<'a, T> &'a T;
type Wat3 = for<T> Vec<T>;
type Wat4 = for<T> Vec<Box<T>>;

RUST

HRTBs

By the way, it might be tempting to create types such as:

Worry no more - they are all illegal:

type Wat1 = for<T> T;
type Wat2 = for<'a, T> &'a T;
type Wat3 = for<T> Vec<T>;
type Wat4 = for<T> Vec<Box<T>>;

RUST

error: only lifetime parameters can be used in this context
 |
1 | type Wat4 = for<T> Vec<Box<T>>;
 | ^

HRTBs

Let’s go find another HRTB in the wild.

HRTBs

Let’s create a function:

fn call_me_maybe() {

}

RUST

HRTBs

Let’s make our function create an object inside it:

fn call_me_maybe() {
 let motto = String::from("existential crisis");
}

RUST

HRTBs

And, eventually, let’s make it accept a closure that will get
invoked with a reference to that object:

fn call_me_maybe(callback: impl Fn(&String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

HRTBs

Now for a quick test:

fn call_me_maybe(callback: impl Fn(&String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

fn main() {
 call_me_maybe(|motto| {
 println!("motto: {}", motto);
 });
}

RUST

HRTBs
It works:

fn call_me_maybe(callback: impl Fn(&String)) {
 let motto = String::from("existential
crisis");
 callback(&motto);
}

fn main() {
 call_me_maybe(|motto| {
 println!("motto: {}", motto);
 });
}

RUST motto: existential crisis

HRTBs

... but:

// v what's this
// v lifetime, exactly?
fn call_me_maybe(callback: impl Fn(&String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

HRTBs

... but:

Once again, lifetime elision kicked-in - let’s try to desugar our
code and see what’s happening underneath.

// v what's this
// v lifetime, exactly?
fn call_me_maybe(callback: impl Fn(&String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

HRTBs

Our first thought may be:

fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

HRTBs

... but, unfortunately:

HRTBs

error[E0597]: `motto` does not live long enough

HRTBs

error[E0597]: `motto` does not live long enough
 |
1 | fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 | -- lifetime `'a` defined here

HRTBs

error[E0597]: `motto` does not live long enough
 |
1 | fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 | -- lifetime `'a` defined here
3 | callback(&motto);
 | ---------^^^^^^-
 | |
 | argument requires that `motto` is borrowed for `'a`
4 | }

HRTBs

error[E0597]: `motto` does not live long enough
 |
1 | fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 | -- lifetime `'a` defined here
3 | callback(&motto);
 | ---------^^^^^^-
 | | |
 | | borrowed value does not live long enough
 | argument requires that `motto` is borrowed for `'a`
4 | }
 | - `motto` dropped here while still borrowed

HRTBs

What the compiler is trying to say is that our &motto doesn’t
necessarily live for 'a , as we’ve tried to persuade it.

HRTBs

What the compiler is trying to say is that our &motto doesn’t
necessarily live for 'a , as we’ve tried to persuade it.

And, to no one’s surprise, that’s true!

To see why, let’s move on to the call site.

HRTBs

From the main ' s point of view, what’s this lifetime?

fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

fn main() {
 // v------------v
 call_me_maybe::<'some_lifetime>(|motto| {
 println!("motto: {}", motto);
 });
}

RUST

HRTBs

This lifetime depends on nothing inside the main function, so
what sense does it even make here?

fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

fn main() {
 // v------------v
 call_me_maybe::<'some_lifetime>(|motto| {
 println!("motto: {}", motto);
 });
}

RUST

HRTBs

Why do we even declared our function as generic over a
lifetime 'a , if there’s just one lifetime that could ever possibly
match?

fn call_me_maybe<'a>(callback: impl Fn(&'a String)) {
 { // lifetime 'motto starts here

 let motto = String::from("existential crisis");

 callback(&motto); // callback must use this
 // "internal" 'motto lifetime

 } // lifetime 'motto ends here
}

RUST

HRTBs

So, similarly to the case we’d had before, we want for
call_me_maybe() to invoke a callback without caring for /
naming the actual lifetime.

HRTBs

So, similarly to the case we’d had before, we want for
call_me_maybe() to invoke a callback without caring for /
naming the actual lifetime.

Higher-ranked trait bounds come to the rescue.

HRTBs

fn call_me_maybe(callback: impl Fn(&String)) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

HRTBs

fn call_me_maybe(
 callback: impl for<'a> Fn(&'a String)
) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

HRTBs

Lo and behold, it actually works.

fn call_me_maybe(
 callback: impl for<'a> Fn(&'a String)
) {
 let motto = String::from("existential crisis");
 callback(&motto);
}

RUST

GATs

GATs

Y’all know the Iterator trait, right?

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

GATs

Y’all know the Iterator trait, right?

Pros:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

GATs

Y’all know the Iterator trait, right?

Pros:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

really simple & tidy·

GATs

Y’all know the Iterator trait, right?

Pros:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

really simple & tidy

does its job

·

·

GATs

Y’all know the Iterator trait, right?

Pros:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

really simple & tidy

does its job

with us since, like, forever

·

·

·

GATs

Y’all know the Iterator trait, right?

Pros: Cons:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

really simple & tidy

does its job

with us since, like, forever

·

·

·

GATs

Y’all know the Iterator trait, right?

Pros: Cons:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

really simple & tidy

does its job

with us since, like, forever

·

·

·

how do I return an item that
borrows from the iterator?

·

GATs

Now, that might seem like a weird question at first, so let’s get
our hands on some code that would benefit from such iterator.

GATs

use std::fs::File;
use std::io::{BufRead, BufReader};

fn main() {
 let file = File::open("test.txt")
 .unwrap();

 let lines = BufReader::new(file)
 .lines();

 for line in lines {
 println!("{}", line.unwrap());
 }
}

RUST

GATs

What’s wrong with this code?

GATs

What’s wrong with this code?

It’s alright~ish, but not perfect, because it’s suboptimal.

GATs

fn main() {
 /* ... */

 for line in lines {
 // For each line, `BufReader` has to allocate a
 // brand-new `String`.
 //
 // Ideally, `BufReader` would just return
 // `Iterator<Item=&str>`, re-using the same
 // `String` underneath.

 println!("{}", line.unwrap());
 }
}

RUST

GATs

Naturally, a question arises:

Why can’t Lines (i.e. the object you get by invoking
.lines()) be Iterator<Item = &str> right now?

GATs

Naturally, a question arises:

Why can’t Lines (i.e. the object you get by invoking
.lines()) be Iterator<Item = &str> right now?

Is it because some big Rust-pharma doesn’t want you to know
about truly zero-cost abstractions?

GATs

Naturally, a question arises:

Why can’t Lines (i.e. the object you get by invoking
.lines()) be Iterator<Item = &str> right now?

Is it because some big Rust-pharma doesn’t want you to know
about truly zero-cost abstractions?

To find out, let’s try to create such iterator!

GATs

Starting from the top:

struct SmartLines {
 /* ... */
}

RUST

GATs

For maximum pleasure & re-usability, we’re going to be generic
over everything that’s Read :

use std::io::Read;

struct SmartLines<R: Read> {
 /* ... */
}

RUST

GATs

As for the fields - since what we’re creating is a wrapper, we’ll
for sure need to store the underlying reader:

use std::io::Read;

struct SmartLines<R: Read> {
 reader: R,
}

RUST

GATs

Since what we’re creating is smart, we’ll for sure need to store
the line-buffer too:

use std::io::Read;

struct SmartLines<R: Read> {
 reader: R,
 line: String,
}

RUST

GATs

We could use some constructor:

/* ... */

impl<R: Read> SmartLines<R> {
 pub fn new(reader: R) -> Self {
 Self {
 reader,
 line: String::new(),
 }
 }
}

RUST

GATs

And, finally, the impl Iterator - we’re so, so close!

/* ... */

impl<R: Read> Iterator for SmartLines<R> {
 /* ... */
}

RUST

GATs

We’re going to yield &str , so:

/* ... */

impl<R: Read> Iterator for SmartLines<R> {
 type Item = &str;

 fn next(&mut self) -> Option<Self::Item> {
 todo!()
 }
}

RUST

GATs

We’re going to yield &str , so:

... oh, right…

/* ... */

impl<R: Read> Iterator for SmartLines<R> {
 type Item = &str;

 fn next(&mut self) -> Option<Self::Item> {
 todo!()
 }
}

RUST

GATs

error[E0106]: missing lifetime specifier
 |
 | type Item = &str;
 | ^ expected named lifetime parameter

GATs

impl<R: Read> Iterator for SmartLines<R> {
 type Item = &str;
 // ^ we can't name this lifetime here...

 // v ... because it's not known up to
 // v the point here
 fn next(&mut self) -> Option<Self::Item> {
 todo!()
 }
}

RUST

GATs

But - d’oh! - why don’t we just implement the Iterator for a
reference?

GATs

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 /* ... */
}

RUST

GATs

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 type Item = &'a str;

 /* ... */
}

RUST

GATs

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 type Item = &'a str;

 fn next(&mut self) -> Option<Self::Item> {
 todo!()
 }
}

RUST

GATs

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 type Item = &'a str;

 fn next(&mut self) -> Option<Self::Item> {
 Some(&self.line)
 }
}

RUST

GATs
error[E0495]: cannot infer an appropriate lifetime for borrow expression due to conflicting requirements
 |
 | Some(&self.line)
 | ^^^^^^^^^^
 |
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the method body at 20:5...
 |
 | / fn next(&mut self) -> Option<Self::Item> {
 | | Some(&self.line)
 | | }
 | |_____^
note: ...so that reference does not outlive borrowed content
 |
 | Some(&self.line)
 | ^^^^^^^^^^
note: but, the lifetime must be valid for the lifetime `'a` as defined on the impl at 17:6...
 |
 | impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 | ^^
note: ...so that the types are compatible
 |
 | fn next(&mut self) -> Option<Self::Item> {
 | __^
 | | Some(&self.line)
 | | }
 | |_____^

GATs

What the compiler is trying to say is that &mut self doesn’t
necessarily live for 'a , because they are two separate
lifetimes:

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 type Item = &'a str;

 // v doesn't necessarily predecease 'a
 fn next(&mut self) -> Option<Self::Item> {
 Some(&self.line)
 }
}

RUST

GATs

We could try fixing this by annotating the lifetime we expect to
be there:

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 type Item = &'a str;

 // vv here
 fn next(&'a mut self) -> Option<Self::Item> {
 Some(&self.line)
 }
}

RUST

GATs

We could try fixing this by annotating the lifetime we expect to
be there:

... but, as you might have guessed, that doesn’t work

impl<'a, R: Read> Iterator for &'a mut SmartLines<R> {
 type Item = &'a str;

 // vv here
 fn next(&'a mut self) -> Option<Self::Item> {
 Some(&self.line)
 }
}

RUST

GATs

error[E0308]: method not compatible with trait
 |
 | fn next(&'a mut self) -> Option<Self::Item> {
 | ^^^
 | lifetime mismatch
 |
 = note: expected fn pointer
 `fn(&mut &'a mut SmartLines<R>) -> Option<_>`
 found fn pointer
 `fn(&'a mut &'a mut SmartLines<R>) -> Option<_>`

GATs

The proper solution, as it turns out, requires a magic of GATs.

GATs

The proper solution, as it turns out, requires a magic of generic
associated types.

GATs

Let’s go back to the definition of our iterator:

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

GATs

Let’s go back to the definition of our iterator:

The issue with current design is that we cannot possibly name
or provide the lifetime for the Item associated type.

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

GATs

Let’s go back to the definition of our iterator:

The issue with current design is that we cannot possibly name
or provide the lifetime for the Item associated type.

Solution? Let’s make the Item generic (at least over lifetimes)!

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

RUST

GATs

trait StreamingIterator {
 type Item<'a>;
 fn next(&mut self) -> Option<Self::Item<'_>>;
}

RUST

GATs

impl<R: Read> StreamingIterator for SmartLines<R> {
 type Item<'a> = &'a str;

 fn next(&mut self) -> Option<Self::Item<'_>> {
 todo!()
 }
}

RUST

GATs

It’s been already possible for a while on nightly, although the
feature itself is very much work-in-progress.

impl<R: Read> StreamingIterator for SmartLines<R> {
 type Item<'a> = &'a str;

 fn next(&mut self) -> Option<Self::Item<'_>> {
 todo!()
 }
}

RUST

GATs

At this point we can create associated types generic solely over
lifetimes:

trait Foo {
 type Bar<'a, 'b, 'c>
 where 'a: 'b;
}

RUST

GATs

At this point we can create associated types generic solely over
lifetimes:

... but, as the name of the feature suggests, eventually we’ll be
able to construct arbitrarily-generic associated types.

trait Foo {
 type Bar<'a, 'b, 'c>
 where 'a: 'b;
}

RUST

GATs

Thanks to GATs, in the future we’ll be able to create structures
generic over - for instance - pointer types:

trait PointerFamily {
 type Pointer<T>: Deref<Target = T>;
}

RUST

GATs

trait PointerFamily {
 type Pointer<T>: Deref<Target = T>;
}

struct ArcFamily;

impl PointerFamily for ArcFamily {
 type Pointer<T> = Arc<T>;
}

struct RcFamily;

impl PointerFamily for RcFamily {
 type Pointer<T> = Rc<T>;
}

RUST

GATs

(example from RFC 1598 @ https://github.com/rust-lang/rfcs/pull/1598)

trait PointerFamily {
 type Pointer<T>: Deref<Target = T>;
}

struct ArcFamily;

impl PointerFamily for ArcFamily {
 type Pointer<T> = Arc<T>;
}

struct RcFamily;

impl PointerFamily for RcFamily {
 type Pointer<T> = Rc<T>;
}

struct Foo<P: PointerFamily> {
 bar: P::Pointer<String>,
}

RUST

https://github.com/rust-lang/rfcs/pull/1598

GATs

Bonus acronym: initially this feature was called associated
type constructors (ATCs).

ZSTs

What do you think will be the output of this code?

use std::mem::size_of;

struct Struct;

enum Enum { }

fn main() {
 println!("{}", size_of::<Struct>());
 println!("{}", size_of::<Enum>());
 println!("{}", size_of::<()>());
 println!("{}", size_of::<!>());
}

RUST

ZSTs

Yeah, correct:

error[E0658]: the `!` type is experimental
 |
 | println!("{}", size_of::<!>());
 | ^
 |
 = note: see issue #35121 for more information
 = help: add `#![feature(never_type)]` to the crate attributes to
enable

ZSTs

#![feature(never_type)]

use std::mem::size_of;

struct Struct;

enum Enum { }

fn main() {
 println!("{}", size_of::<Struct>());
 println!("{}", size_of::<Enum>());
 println!("{}", size_of::<()>());
 println!("{}", size_of::<!>());
}

RUST

ZSTs

Yeah, all those types are literally empty:

0
0
0
0

ZSTs

ZST stands for zero-sized type.

ZSTs

ZST stands for zero-sized type.

... and they are hella useful!

ZSTs

For instance, the () (called unit type) is used by the Rust’s
standard library to implement HashSet , reusing code from
HashMap :

Since both Rust and LLVM know that such map contains only
keys, all the additional code gets striped out - yay zero-cost
abstractions!

pub struct HashSet<T, S = RandomState> {
 map: HashMap<T, (), S>,
}

RUST

ZSTs

By the way, () is both a value, and a type:

fn main() {
 // vv value
 let foo: () = ();
 // ^^ type

 println!("{:?}", foo); // ()
}

RUST

ZSTs

There exists a similar type, ! (called never type), which
serves a similar purpose, with one difference: you can’t obtain
a value of this type.

ZSTs

Let’s talk: Result<String, ()> .

ZSTs

Let’s talk: Result<String, ()> :

fn print_me(val: Result<String, ()>) {
 match val {
 Ok(val) => println!("ok: {:?}", val),
 Err(val) => println!("err: {:?}", val),
 }
}

fn main() {
 print_me(Ok("pancake".into())); // ok: "pancake"
 print_me(Err(())); // err: ()
}

RUST

ZSTs

Let’s talk: Result<String, !> .

ZSTs

Let’s talk: Result<String, !> :

For Result<String, !> there’s no way to construct the Err
variant.

fn print_me(val: Result<String, !>) {
 match val {
 Ok(val) => println!("ok: {:?}", val),
 Err(val) => println!("err: {:?}", val),
 }
}

fn main() {
 print_me(Ok("pancake".into()));
 print_me(Err(!)); // compile-time error
}

RUST

ZSTs

As an example, we can use ! to implement a non-failing FromStr :

use std::str::FromStr;

struct Person(String);

impl FromStr for Person {
 type Err = !;

 fn from_str(str: &str) -> Result<Self, !> {
 Ok(Person(
 str.into()
))
 }
}

fn main() {
 let Ok(person) = Person::from_str("Tommy Wiseau");

 // ^ no need to `.unwrap()`, because Rust understands
 // ^ that the `Err` variant cannot be possibly constructed

 println!("Oh hi, {}!", person.0);
}

RUST

ZSTs

As another example, we will be able to use ! (called never type) to implement
a non-failing FromStr :

use std::str::FromStr;

struct Person(String);

impl FromStr for Person {
 type Err = !;

 fn from_str(str: &str) -> Result<Self, !> {
 Ok(Person(
 str.into()
))
 }
}

fn main() {
 let Ok(person) = Person::from_str("Tommy Wiseau");

 // ^ no need to `.unwrap()`, because Rust understands
 // ^ that the `Err` variant cannot be possibly constructed

 println!("Oh hi, {}!", person.0);
}

RUST

ZSTs

Currently the compiler cannot yet fully reason about the ! :

The work on this feature is still ongoing though, so fingers
crossed it gets merged soon!

error[E0005]: refutable pattern in local binding: `Err(_)` not
covered
 |
 | let Ok(person) = Person::from_str("Tommy Wiseau");
 | ^^^^^^^^^^ pattern `Err(_)` not covered

DSTs

DST stands for dynamically-sized type.

DSTs

DST stands for dynamically-sized type.

You’ve for sure had the chance to use them tons of times:

str (but not &str or String),

[T] (but not [T; n] , &[T] or Vec<T>),

dyn Trait (but not &dyn Trait).

·

·

·

DSTs

DST stands for dynamically-sized type.

You’ve for sure had the chance to use them tons of times:

... but there’s also one more.

str (but not &str or String),

[T] (but not [T; n] , &[T] or Vec<T>),

dyn Trait (but not &dyn Trait).

·

·

·

DSTs

What’s the size of this type?

struct NamedSlice<'a, T> {
 name: String,
 slice: &'a [T],
}

RUST

DSTs

What’s the size of this type?

24 bytes for String + 8 bytes for &[T] + padding = 40 bytes.

(counted using std::mem::size_of() on a x86-64)

struct NamedSlice<'a, T> {
 name: String,
 slice: &'a [T],
}

RUST

DSTs

What’s the size of this type?

struct NamedSlice<T> {
 name: String,
 slice: [T], // look, ma! no reference
}

RUST

DSTs

What’s the size of this type?

First things first: this is legal; it’s fine for a struct’s last field to
be unsized.

struct NamedSlice<T> {
 name: String,
 slice: [T],
}

RUST

DSTs

What’s the size of this type?

First things first: this is legal; it’s fine for a struct’s last field to
be unsized.

Second things second: this struct is !Sized .

struct NamedSlice<T> {
 name: String,
 slice: [T],
}

RUST

DSTs

use std::mem::size_of;

struct NamedSlice<T> {
 name: String,
 slice: [T],
}

fn main() {
 println!("{}", size_of::<NamedSlice<String>>());
}

RUST

DSTs

error[E0277]: the size for values of type `[String]` cannot be
 known at compilation time
 |
 | println!("{}", size_of::<NamedSlice<String>>());
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | doesn't have a size known at
 | compile-time

DSTs

struct NamedSlice<T> {
 name: String,
 slice: [T],
}

fn main() {
 let ns = NamedSlice {
 name: "named".into(),
 slice: [1, 2, 3] as _,
 };
}

RUST

DSTs

error[E0277]: the size for values of type `[_]` cannot be known
 at compilation time
 |
 | let ns = NamedSlice {
 | ______________^
 | | name: "named".into(),
 | | slice: [1, 2, 3] as _,
 | | };
 | |_____^ doesn't have a size known at compile-time

ICE CTA

What do you think the compiler will say about this code?

fn main() {
 break rust;
}

RUST

ICE CTA

Yes, rustc has easter eggs:

ICE CTA

And, yes, rustc has bugs too:

ICE CTA

ICE: internal compiler error

ICE CTA

ICE: internal compiler error

CTA: call to action

My iced-tea for you

Try contributing to rustc , cargo , rustfmt or any other
project you find useful - all of them could use a little bit more
love!

Bonus points for fixing an actual ICE in the compiler, but really:
even a single, small commit can improve your (or someone
else’s!) workflow and make (your or someone else’s) life better.

To sum up

Scary acronym Comforting expansion

ATC associated type constructor (→ GAT)

CTA call to action

DST dynamically-sized type

GAT generic associated type

HRTB higher-rank trait bound

ICE internal compiler error

OIBIT opt-in built-in trait (→ auto trait)

ZST zero-sized type

Scary Acronyms (and Super Creeps)
~ Patryk Wychowaniec, 2020

Thank you!

	Past
	1752
	1752
	1582
	1582
	1582
	1582
	1582
	1582
	1582
	1582
	1582
	1582
	1752
	Fast-forward
	2014
	2014
	2014
	2014
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	OIBITs
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Auto traits
	Me, Myself and I
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs: Lifetime elision
	HRTBs: Lifetime elision
	HRTBs: Lifetime elision (1/3)
	HRTBs: Lifetime elision (1/3)
	HRTBs: Lifetime elision (2/3)
	HRTBs: Lifetime elision (2/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs: Lifetime elision (3/3)
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	HRTBs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	GATs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	ZSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	DSTs
	ICE CTA
	ICE CTA
	ICE CTA
	ICE CTA
	ICE CTA
	My iced-tea for you
	To sum up
	Scary Acronyms (and Super Creeps): ~ Patryk Wychowaniec, 2020

